ADAPTIVE FILTERS
C.F.N. COWAN
P.M. GRANT

SUMMARY

In this up-to-date state of the art book, the authors provide a coherent and comprehensive introduction to adaptive filtering. They cover basic theory, practical realizations, and applications, such as adaptive equalizers for telecommunications data transmission systems. Practical engineers find this book a good source of information on the practical possibilities of these processors.

This book's key features include:

- Chapter 2 estimation theory discusses and is followed by two chapters on adaptive finite impulse response and infinite impulse response.
- Chapter 5 covers the theory, design, and application of adaptive lattice filters.
- Chapter 6 deals with signal transformation techniques for adaptive filtering.
- Chapter 7 covers adaptive filter implementations.
- Chapter 8 includes main applications in communications equalization and echo cancellation.

Chapter 9 describes such application areas as fast tracking filters for HF and microwave digital radion, linear predictive coding, and maximum-entropy and maximum-likelihood analysis techniques.

CONTENTS

PREFACE xiii
ACKNOWLEDGMENTS xv
ABBREVIATIONS xvii
SYMBOLS xix

1 INTRODUCTION TO ADAPTIVE FILTERS 1

Peter M Grant and Colin F. N Cowan
1.1 Adaptive Processing 1
1.1.1 Adaptive Filters 2
1.1.2 Adaptive Filter Operation 3
1.2 Programmable Filter Designs 4
1.2.1 Recursive Filters 4
1.2.2 Nonrecursive Filters 6
1.2.3 Transform-Based Filters 8
1.3 Optimum Linear Estimation 10
1.4 Adaptive Filters 11
1.4.1 Adaptive Infinite Impulse Response Filters 11
1.4.2 Adaptive Finite Impulse Response Filters 11
1.4.3 Transform-Based Adaptive Filters 12
1.4.4 Hardware Designs 14

2 OPTIMUM ESTIMATION TECHNIQUES 15

Colin F. N. Cowan
2.1 Introduction 15
2.2 Optimum Nonrecursive (Wiener) Estimation 16
2.2.1 Practical Example of a Wiener Estimator 18
2.3 Optimum Recursive (Kalman) Estimation 21
2.3.1 Scalar Kalman Filter 21
2.3.2 Derivation of the Kalman Gain 24
2.4 Vector Kalman Filter 25
2.4.1 Vector Kalman Filter as a Channel Equalizer 26
2.5 Conclusions 27
ADAPTIVE ALGORITHMS FOR FINITE IMPULSE RESPONSE FILTERS

Benjamin Friedlander

3.1 Introduction

3.2 Recursive Least-Squares Algorithm
 3.2.1 Derivation of the RLS Algorithm
 3.2.2 Exponentially Weighted RLS
 3.2.3 Computational Complexity
 3.2.4 Stochastic Interpretation
 3.2.5 Asymptotic Accuracy of Least-Squares Estimates
 3.2.6 Asymptotic Properties of the Adaptive Filter
 3.2.7 Square-Root Implementation
 3.2.8 Sliding Window Form of the RLS

3.3 Least-Mean-Squares Adaptive Algorithm
 3.3.1 Iterative Computation of the Optimal Coefficient Vector
 3.3.2 LMS Algorithm
 3.3.3 Convergence of the LMS Algorithm
 3.3.4 Learning Curve
 3.3.5 Recent Convergence Results
 3.3.6 LMS Algorithm as a Stochastic Approximation Method

3.4 Adaptive Finite Impulse Response Filters with Linear-Phase Characteristics
 3.4.1 Stochastic Case
 3.4.2 RLS Algorithm
 3.4.3 LMS Algorithm

ADAPTIVE ALGORITHMS FOR INFINITE IMPULSE RESPONSE FILTERS

John R. Treichler

4.1 Introduction
 4.1.1 General Scope
 4.1.2 Why Use UR Adaptive Filters?
 4.1.3 Problem Formulation
 4.1.4 Implications of Feedback

4.2 Minimum Mean-Square-Error Techniques
 4.2.1 Developing Necessary Conditions for a Solution
 4.2.2 Solution Techniques
 4.2.3 Historical Perspective

4.3 Techniques Based on Nonlinear Stability Theory
 4.3.1 Problem Formulation
 4.3.2 Hyperstable Adaptive Recursive Filter
 4.3.3 Hyperstability and Adaptive Filtering
 4.3.4 Simple Hyperstable Recursive Filter

4.4 Convergence Analysis
 4.4.1 Goals of Convergence Analysis
 4.4.2 Approaches
 4.4.3 General Conclusions

4.5 Limitations in the Use of UR Adaptive Filters
 4.5.1 Coefficient Sensitivity
 4.5.2 Inverse Modeling of Non-Minimum-Phase Filters
 4.5.3 Order Matching
 4.5.4 Conversion of Stability-Based Techniques to Inverse Modeling

4.6 Conclusion

RECURSIVE LEAST-SQUARES ESTIMATION AND LATTICE FILTERS

Tohn M Turner

5.1 Introduction

5.2 General Lattice Digital Filter Structure

5.3 Properties of the Lattice Structure
 5.3.1 Orthogonalizing Properties
 5.3.2 Physical Interpretation

5.4 Sample Data Estimates of Reflection Coefficients
 5.4.1 Gradient Estimates of Reflection Coefficients

5.5 Recursive Least-Squares Lattice Algorithm
 5.5.1 Formulation of Recursive Estimates
 5.5.2 Order-Update Equations
 5.5.3 Time-Update Equations
 5.5.4 Exact Least-Squares Lattice Recursions
 5.5.5 Likelihood Variable

Joint-Process Lattice Filter
5.7 Square-Root Normalized Least-Squares Lattice Filter
5.8 Computational Complexity and CORDIC Arithmetic
 5.8.1 CORDIC Arithmetic
 5.8.2 Lattice Filtering by Rotations
5.9 Simulations and Applications
5.10 Comments and Conclusions

6 FREQUENCY-DOMAIN ADAPTIVE FILTERING
Earl R. Ferrara, Jr.
6.1 Introduction
6.2 Frequency-Domain Adaptive Filter Based on Circular Convolution
6.3 Algorithms for General Adaptive Filtering
 6.3.1 Fast LMS Adaptive Filter
 6.3.2 Unconstrained Frequency-Domain LMS Adaptive Filter
6.4 Channel Equalization
 6.4.1 Isolated Pulse Equalization
 6.4.2 Random Data Sequence Equalization
6.5 Transmultiplexer Adaptive Filter
6.6 Convergence Rate Improvement
6.7 Summary
6.8 Appendix: Linear versus Circular Convolution

7 SURVEY OF ANALOG AND DIGITAL ADAPTIVE FILTER REALIZATIONS
Colin F. N. Cowan and Peter M. Grant
7.1 Introduction
7.2 Digital Implementations
 7.2.1 Classical Digital Design
 7.2.2 Digital Adaptive Filters Using Simplified Algorithms
 7.2.3 Digital Adaptive Filters Using Memory Access Techniques
 7.2.4 Distributed Arithmetic Adaptive Filters
 7.2.5 Residue Number Systems
7.3 Analog Sampled-Data Adaptive Filters
 7.3.1 Charge-Coupled-Device Implementations
 7.3.2 Monolithic CCD Adaptive Filter
7.4 High-Bandwidth Adaptive Filters Using Surface Acoustic Wave Devices
7.5 Future Designs Using VLSI Technology

8 ADAPTIVE FILTERS IN TELECOMMUNICATIONS
Peter F. Adams
8.1 Introduction
8.2 Data Transmission
 8.2.1 Linear Distortions in Telephony Networks
 8.2.2 Speech-Band Equalizers
 8.2.3 Echo Cancellation for Speech-Band Data Transmission
8.3 Digital Transmission over Local Networks
 8.3.1 Echo Cancellation for WAL2 Transmission
 8.3.2 Baseband Transmission
8.4 Echo Cancellation for Telephony
 8.4.1 Network Echo Cancelers
 8.4.2 Terminal Echo Cancelers
8.5 Other Telecommunications-Related Applications

9 OTHER ADAPTIVE FILTER APPLICATIONS
Peter M. Grant
9.1 Introduction
9.2 Adaptive Estimation
 9.2.1 Inverse System Modeling
 9.2.2 Direct System Modeling
9.3 Spectral Estimation
 9.3.1 Introduction
 9.3.2 Spectral Line Enhancement
 9.3.3 Speech Processing
Applications of adaptive filters include multichannel noise reduction, radar/sonar signal processing, channel equalization for cellular mobile phones, echo cancellation, and low delay speech coding. This chapter begins with a study of the state-space Kalman filter. In Kalman theory a state equation models the dynamics of the signal generation process, and an observation equation models the channel distortion and additive noise. Then we consider recursive least square (RLS) error adaptive filters. General discussion on how adaptive filters work, list of adaptive filter algorithms in DSP System Toolbox, convergence performance, and details on few common applications. Overview of Adaptive Filters and Applications. On this page. Adaptive Filters in DSP System Toolbox. Least Mean Squares (LMS) Based FIR Adaptive Filters. Recursive Least Squares (RLS) Based FIR Adaptive Filters. Affine Projection (AP) FIR Adaptive Filters. FIR Adaptive Filters in the Frequency Domain (FD).
Ein adaptiver Filter in der digitalen Signalverarbeitung ist ein spezielles digitales Filter, das die Eigenschaft besitzt, seine Übertragungsfunktion im Betrieb selbständig zu verändern. Blockdiagramm eines adaptiven Filters.

Deutsch Wikipedia: adaptive filter — adaptyvusis filtras

Savvybä—s dinamiųjai priklauso nuo filtruojamų duomenų specifikos. Preface. DSP and adaptive filtering. With the decrease in cost and the increase in speed of digital devices, Digital Signal Processing (DSP) is showing up in everything from cell phones to hearing aids to rock concerts. Many applications of DSP are static. More general adaptive filtering considerations. Following that, the lessons in the series will become somewhat more general. I plan to publish lessons that explain and provide examples for the four common scenarios in which adaptive filtering is used. Applications of Adaptive Filtering. By J. Gerardo Avalos, Juan C. Sanchez and Jose Velazquez. Submitted: October 15th 2010Reviewed: March 10th 2011Published: July 5th 2011.

The efficiency of the adaptive filters mainly depends on the design technique used and the algorithm of adaptation.