INDEX

A
Abex Corporation, 375
Active Cavity Irradiance Monitor II,
ACRIM II, 103
Advanced Communications Technology
Satellite, ACTS, 17, 18, 47, 96, 254
Advanced Digital Engine Control System,
ADECS, 213
Advanced Digital Synthetic Aperture Radar
(SAR) Processor, ADSP, 257
Advanced Fighter Technology Integration,
AFTI, 198
Advanced short takeoff and vertical landing,
ASTOVL, 181, 210
Advanced technology blades, SV-15/ATB pro-
gram, 210
Advanced Transport Operating System,
ATOPS, 229
Advanced Very High Resolution Radiometer,
AVHRR, 35
Aerojet General Corp., 563, 566, 569
Aeronautics, Balloons, and Sounding Rockets,
AB&SR, 312
Aero-Space Technology, AST, 467
Aetna Life and Casualty, Inc., 52, 53
Agency for International Development, 16
Agriculture, U.S. Department of, 13, 16–17,
392; and AgRISTARS, 16–17, 81
Aiken, William S., Jr., 186, 187
Air Force, U.S., 17, 35, 60, 62, 70, 198, 200,
204, 214, 217, 224–225, 227, 237, 252, 306;
and Air Force Satellite Control Facility,
Sunnyvale, California, 305
Air Products & Chemicals, Inc., 551, 554, 557,
560, 563, 566, 570
Airborne Windshear Detection and Avoidance
Program, 234
Aircraft Energy Efficiency program, ACEE,
181, 189, 190–197, 198
Alabama, University of, 360, 572, 575, 579,
582, 590, 592, 595, 598
Alaska, 51, 55, 57; and Fairbanks, 306, 307,
342; and University of, 594, 596, 600
Allen, H. Julian, 390
Allen, Lew, Jr., 394
Aller, Robert O., 301
AlliedSignal Aerospace Co., 568
Allison Corp., 210
American Institute of Aeronautics and
Astronautics, 572, 575, 578, 581, 584, 587,
590, 593, 596, 599
American Satellite Company, ASC, 50, 74, 128
American Society of Mechanical Engineers,
237
American Telephone and Telegraph, AT&T, 50,
51, 560
Ames, Joseph S., 391
Ames Research Center, 181, 182, 186, 190,
202, 203, 205, 208, 220, 222, 224, 289, 321,
383, 389, 390–391, 392, 404, 407, 414–426,
428, 432–434, 466, 472–482, 487–488,
492–493, 513–516, 538–539; and
Numerical Aerodynamic Simulation
Facility, 183
Anex Corp., 564
Anik, 17, 51, 54, 64–65, 66, 67, 72, 159–161;
and Telesat Canada Corporation, 17, 51, 64,
159–161
Announcement of Opportunity, 15, 25
Antigua, 306
Apollo program, 211, 397, 402; and Apollo-
Soyuz Test Project, 28
Applications Explorer Mission, AEM, 14, 16
Applications Technology Satellites, ATS, 12,
13, 17,
Arabsat, 17, 65, 66, 67, 73, 162
Argee Corp., 567
ARGOS, 48
Ariane, 54, 67
Arizona, University of, 571, 574, 577, 580,
584, 586, 589, 592, 595, 598
Arizona State University, 582, 591
Army, U.S., 14, 205, 208, 392, 396, 401
Arnold, Ray, 19
Ascension Island, 305, 307, 342
Asia, 57
Asia Satellite, AsiaSat, 55
Assembly Concept for Construction of
Erectable Space Structures, ACCESS, 184,
243, 248, 253
Association of University Research and
Astronomy, 578, 581, 583, 586, 589, 592,
595, 598
Atlantic Missile Range, 396
Atlantic Ocean, 39, 57, 63
Atlantis, 138, 163, 166
Atlas, 35, 37; and Atlas-Centaur, 58, 148–156
Atomic Energy Commission, 180
Auburn University, 369
Aussat, 17, 66–67, 74, 162–163; and Aussat Proprietary, Ltd., 66, 67
Australia, 57, 66, 74, 312; and Alice Springs, 312; and Canberra, 300, 306, 307, 308, 311, 320, 347; and Orroral Valley, 306, 347; and Parkes, 311, 312; and Tidbinbilla, 311, 312, 343; and Yarragardee, 305, 306, 349
Auter, Harry, 402
B
Bahamas, Grand, 306
Balch, Jackson M., 401
Ball Corp., 551, 553, 554, 557, 560, 563, 566, 569
Ballhaus, William F., Jr., 187, 390
Bamsi, Inc., 561, 563, 566, 569
Battelle Columbus Laboratories, 369, 577
Battelle Memorial Institute, 571, 574, 581, 583, 587, 590, 593, 596, 600
Beattie, Donald A., 186
Bechtel National, Inc., 557
Beeler, D.E., 391
Beggs, James M., 355, 358, 388
Bell, 209
Bendix Corporation, Allied, 540, 550, 553, 556, 559, 562, 565
Benson, Robert, 20
Bikle, Paul F., 391
Botswana, Africa, 305, 344; and Botswana National Museum, 344
Bowles, Roland, 235
Boyd, John, 391
Brazil, 17
British Aerospace, 210
Bryant, Frederick B., 301
Bulgaria, 49
Buckhorn, California, 305, 307
Bush, George, 228

C
California, University of, at Berkeley, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598; and at Los Angeles, 572, 575, 578, 580, 584, 587, 590, 593, 596, 599; and at San Diego, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
California Institute of Technology, 394, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
California State University at Chico, 573
Calio, Anthony J., 18, 47
Canoe Valley, 306, 320, 395
Caribbean, 14, 57
Carruthers, John, 18
Carter, Jimmy, 16
Centers for the Commercial Development of Space, 360
Central America, 39
Centre Nationale d'Études Spatiales, CNES, 34
Charles Stark Draper Laboratory, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Charlesworth, Charles E., 395
Cheney, Richard, 228
Chicago, University of, 571, 574, 577, 580, 583, 586, 589, 592, 595, 599
Chile, University of, 571, 574, 577, 580, 583, 586, 590, 593, 596, 599
Civil Service Reform Act of 1978, 464
Clark, John F., 393
Clarks, Henry J., 355, 356
Clarkson University, 369
Clean Air Act, Amendments, 15
Clear Lake, Texas, 394
Cleveland Electric Illuminating, 555
Cleveland Hopkins International Airport, 399
Cleveland State University, 600
Cohen, Aaron, 395
Colladay, Raymond S., 186, 187, 224, 225
Collier, Robert J., Trophy, 4, 182, 191, 398, 400; and National Aeronautic Association, 4
Colorado, University of, 369, 372, 572, 575, 577, 580, 584, 586, 589, 592, 595, 598
Columbia, 22, 138, 140, 160, 290
Columbia University, 572, 575, 578, 581, 585, 587, 590, 593, 596, 599
Commerce Business Daily, 504
Commerce, U.S. Department of, 13, 32
Commercial Use of Space, 1984 National Policy, 355
Commonwealth Scientific and Industrial Research Organization, Australia, 311
Communications Satellite Corporation, Comsat, 47, 52, 53, 58
Communications Technology Satellites, CTS, 12
Compton, Dale L., 390
Computer Sciences Corporation, 540, 550, 553, 556, 559, 562, 565, 568
INDEX 603

Comstar, 17, 50, 72, 128; and Comsat General Corporation, 50
Congress, 11, 12, 15, 16, 31, 32, 46, 47, 175, 176, 188, 189, 226, 228, 357, 358, 361, 396, 497, 498
Construction of Facilities, CoF, 498, 516
Continental Construction Corp., 569
Continental Telecom, Inc., Contel, 50, 314, 562, 565, 568
Continental Telephone, 314
Control Data Corporation, 551, 554, 557, 560, 564, 566
Cooper, Robert, 393
Cornell University, 572, 575, 578, 581, 584, 587, 590, 593, 596, 599
Cortright, Edgar M., 397
COSMOS, 48
COSPAS, 17, 37, 48, 49
Costa, S. Richard, 302
Cray Research Inc., 560, 569
Cryogenic Limb Array Etalon Spectrometer, CLAES, 102
Culbertson, Philip E., 357

D
Data Capture Facility, 321
Data Collection System, 34
Debus, Kurt H., 396
Deere, John, & Co., 370
Defense Systems, Inc., 370
Defense, U.S. Department of, DOD, 61, 70, 73, 176, 189, 192, 204, 205, 207, 208, 210, 213, 221, 224, 225, 226, 227, 228, 247, 299, 305, 348; and Defense Advanced Research Projects Agency, DARPA, 189, 205, 207, 208, 213, 217, 222, 223, 224, 227; and Defense Space Communications System, DSCS, 63
De France, Smith J., 390
Delmarva Peninsula, 402
Delta, 40, 51, 52, 67, 68
Denmark, 17, 247
Denver, Colorado, 235
Deutsch, George C., 187
Digital Autonomous Terminal Access Communication, DATAC, 231
Digital Electronic Engine Control, DEEC, 212
Digital Equipment Corporation, 552, 554, 557, 560, 564, 566
Digital fly-by-wire, DFBW, 210, 211, 212, 216
Discovery, 106, 128, 129, 130, 141, 157, 158, 161, 162, 165

District of Columbia, Washington, D.C., 501
Donlan, Charles J., 397
Dryden Laboratory, 211
DuPont, 370
Dynamic Augmentation Experiment, DAE, 246

Earth, 5, 12, 16, 22, 26, 29, 30–38, 41, 42, 45, 48, 50, 55, 59, 60, 61, 62, 67, 68, 69, 178, 182, 183, 184, 222, 240, 247, 248, 249, 250, 251, 299, 300, 304, 309, 313, 315, 344, 394, 401, 403
Earth Data Corporation, 375
Earth Observation Satellite Company, EOSAT, 16, 42
Earth Observing System, EOS, 256
Earth Radiation Budget Experiment, ERBE, 15, 30, 31, 37
Earth Radiation Budget Satellite, ERBS, 14, 15, 28, 30, 31, 37, 73, 101
Earth Resources Technology Satellite, ERTS, 3, 13
Eastern Test Range, Cape Canaveral, 396
Eaton, Peter T., 356
ECH0, 345
Ecuador, Quito, 305, 306
Edelson, Burton, 19
EG&G Florida, Incorporated, 540, 553, 556, 559, 562, 565, 568
Ellington Air Force Base, 394
Elms, James C., 395
Emergency Locator Transmitter, ELT, 47–49
Emergency Position Indicating Radio Beacon, EPIRB, 47–49
Endeavour, 241
Energy, U.S. Department of, 180, 250, 400
Engineering and Economic Research, 570
England, 69; and Winkfield, 305
Enterprise, 211, 241, 392
Environmental Research Institute of Michigan, 369, 573, 576, 578
Estess, Roy S., 402
Europe, 47, 57
European Space Agency, ESA, 312, 501, 574, 577, 580, 583, 586
Evans, L.J., Jr., 357
Experimental Assembly of Structures in Extravehicular Activity, EASE, 184, 243, 248
Extravehicular activity, EVA, 249, 258
Extremely high frequency, EHF, 61

Fairchild Industries, Inc., 50, 314, 371, 555, 557, 560, 563, 566, 569
Feature Identification and Landmark Experiment, FILE, 26–27
Federal Acquisition Regulation, FAR, 502, 504, 506
Federal Aviation Administration, FAA, 176, 189, 192, 210, 229, 234, 235, 238
Federal Communications Commission, 18, 50
Federal Financing Bank, U.S. Department of Treasury, 314, 331, 332
Federal Technology Transfer Act of 1986, 359
Federal Wage System, 467
Ferrick, Eugene, 302
Finland, 17, 49
Fisk, Lennard A., 19
Fleet Satellite Communications, Fltsatcom, 17, 60, 72, 154–156
Fletcher, James C., 388
Force, Charles T., 301, 302
Fort Irwin, California, 306
Fosque, Hugh S., 301
France, 17, 34, 37, 48, 57, 247; and Modane, 195
Franklin Institute, 576
Frosch, Robert A., 356, 357, 360, 388

Gabris, Edward A., 188
Galapagos Islands, 14
Galaxy, 51, 52, 55, 67, 73, 131
Garrett Corporation, 552, 555
Gemini, Project, 396
General Dynamics Corp., 197, 198, 210, 212, 540, 550, 553, 556, 559, 562, 566, 569
General Motors, 194, 551
General Schedule, GS, 464, 465
General Sciences Corporation, 375
General Services Administration, GSA, 505, 506
Geological Survey, U.S., 13, 46
George Washington University, 572, 578, 585, 588, 591, 594, 597, 600
Georgia Institute of Technology, 573, 576, 591, 594, 597, 600
Geosat, 16
Geostar Corporation, 374
Geostationary Operational Environmental Satellite, GOES, 12, 14, 28, 32, 38, 39, 40, 41, 72, 116–121
Germany, 25, 57, 219, 247
Get Away Special, GAS, 25–26
Gillam, Isaac T., Ike, IV , 355, 391
Girnuth, Robert R., 395
Giotto, 312
Glenn, T. Keith, 388
Global Associates, 552
Global positioning system, GPS, 229
Global Weather Experiment, 15
Goddard, Robert H., 393
Goett, Harry J., 393
Goetz, Robert, 395
Goldstone, California, 306, 307, 308, 309, 311, 313, 344
Goodyear Aerospace Corporation, 257
Graham, William R., 178, 226, 388
Graves, Randolph A., 187
Greenbelt, Maryland, 51, 300, 304, 392
Greenwood, Lawrence, 19
Griffin, Gerald, 395, 396
Grumman Aircraft Corporation, 199, 210, 217, 373, 558, 566, 567, 568, 570
GTE, 373
GTI Corporation, 370
Guastafreddo, Angelo, 390, 391
Gulfstream Aerospace Corporation, 194, 196, 197

Halley’s Comet, 312
Halogen Occultation Experiment, HALOE, 33, 86, 102
Halpern, Richard, 20
Hamilton Standard, 192, 195
Hampton, Virginia, 397, 579, 581, 584, 587, 590, 593, 596, 599
Harrier, aircraft, 205
INDEX 605

Harris Corporation, 314, 563, 567
Harris, Leonard A., 187
Hart, Terry, 247
Harvard University, 571, 574, 577, 580, 584, 587, 589, 594, 596, 599
Hawaii, 39, 50, 51, 55, 57, 306, 307
Hawaii, University of, 574, 578, 580, 583, 587, 589, 592, 596, 599
Heath, Donald P., 393, 397
Heflex Bioengineering Test, 23
Hercules Corporation, 375
High Angle of Attack Research Vehicle, HARV, 220
High Resolution Doppler Imager, HRDI, 102
Highly Integrated Digital Electronic Control, HIDEC, 213
Highly Maneuverable Aircraft Technology, HIMAT, 214, 215, 216, 217, 286
Himms, Noel W., 393
Hlass, Terry L., 401
Holcomb, Lee B., 187
Honeywell Corporation, Inc., 371, 551, 554, 557, 558, 560, 564
Horstmann, Robert M., 302
Houston, Texas, 394
Houston, University of, 369, 593, 594, 597, 599, 600
Howard University, 585, 591
Hubble Space Telescope, 321, 401
Huntsville, Alabama, 400

I

Ice accretion code, Lewis Research Center, LEWICE, 238
Icing Research Tunnel, IRT, 237, 238
Illinois, University of, Urbana, 573, 588, 590, 593, 597, 600
Improved Stratospheric and Mesospheric Sounder, ISAMS, 102
INCO, 370
Indonesia, 17, 51
Induced Environment Contamination Monitor, IECM, 245, 289
Industrial Applications Centers, IACs, 359
Industrial Guest Investigator (IGI) Agreement, 360, 361
Inertial Upper Stage, IUS, 317, 318
Informatics General Corporation, 554, 558, 560, 563
Insat, 17, 67–68, 164–165
Institute for Technology Development, ITD, 369, 375
Instrumentation Technology Associates, 373
Interior, U.S. Department of, 13, 16, 398
International Business Machines, IBM, 52, 53, 211, 540, 550, 553, 556, 559, 562, 565, 568
International Fuel Cells Corp., 561
International Telephone and Telegraph, ITT, 551
Invitation for Bid, IFB, 504
Iowa, University of, 571, 574, 578, 580, 584, 587, 590, 593, 595, 598
Ireland, 247
Italy, 57

J

Jacksonville, Florida, 396
Japan, 47, 57
Johannes, Robert P., 391
Johns Hopkins University, 70, 391, 573, 577, 584, 586, 590, 593, 596, 599
Johnson, Harry W., 356
Johnson, Lyndon B., 396
Joint Endeavor Agreements, JEA, 360, 361, 370, 371, 372, 373
Jones, Robert T., 202
Jupiter, 3, 5, 309, 311

K

Kansas, University of, 576, 579, 582
Kayten, Gerald G., 187
Kentron International, Inc., 551, 554, 557
Kerrebrock, Jack, 186
Keyworth, G.A., 177
Kimball, Harold G., 301, 302
Klate Holt Co., 555, 558, 567, 569
Klineberg, John M., 399
Kraft, Christopher C., Jr., 395
Kramer, James, 186
Kreiger, Robert, 402
Krier, Gary E., 356
Krings, John, 227
Krug International Corporation, 570
Kutler, Paul, 187
Kutyna, Donald J., Major General, 224

L

Lamberth, Horace, 396
Landsat, 3, 12, 13, 16, 32, 33, 42, 43, 44, 79, 122–124, 312, 327, 329, 340
Langley, Samuel Pierpont, 397
Large-scale Advanced Propfan, LAP, 195, 196
Laser Geodynamics Satellite, LAGEOS, 14
La Soufriere, volcano, 14
Leasat/Syncom, 17, 61, 62, 73, 157–158
Lee, Thomas J., 400
Lemkey, Frank, 20
Levine, Jack, 187
Lewis, George W., 399
Light Detecting and Ranging, LIDAR, 235, 257, 258
Little, Arthur D., Inc., 371
Local User Terminal, LUT, 48
Long Duration Exposure Facility, LDEF, 243, 246, 247, 248, 296, 398
Louisiana, New Orleans, 400, 401
Lovelace, Alan M., 388
Lovell, Robert, 19
Low, George M., 388, 395
LTV Aerospace & Defense Co., 560, 564, 569
Lubarsky, Bernard, 399
Lucas, William R., 400
Lunar Roving Vehicle, 401
Lundin, Bruce T., 399
Luxenberg, Barbara A., 356
Lyman, Peter T., 394

M

Madrid, Spain, 300, 307, 308, 313, 320, 346
Magnetic Field Satellite, Magsat, 14, 16, 42, 44, 46, 72, 125–127
Magnetoplasmodynamic, MPD, 252
Malaysia, 68
Management & Technical Services, 551, 554, 557, 560, 563, 567
Management Services, Inc., 561, 563
Manganiello, Eugene J., 399
Manned Spaceflight Network, MSFN, 300
Mariner, 309
Mark, Hans, 388, 390
Mars, 240, 309, 345, 398
Marshall, General George C., 400
Martin, John J., 186, 187
Martin Marietta Corporation, 372, 540, 541, 544, 547, 550, 553, 556, 559, 562, 565, 568
Martin Thiokol Corporation, 52, 540, 550, 556, 559, 562, 565, 568
Maryland, University of, College Park, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Massachusetts Institute of Technology, 248, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Massively Parallel Processor, MPP, 257
Materials Experiment Assembly, MEA, 25, 26
Materials Processing in Space, MPS, 360, 361
Materialwissenschaftliche Autonome Experimente unter Schwerelosigkeit, MAUS, 25, 26
McCarthy, John F., 399
McCartney, Forrest, 396
McCoy, Caldwell, Jr., 19
McDonnell Douglas Corporation, 51, 52, 196, 197, 204, 210, 221, 361, 370, 540, 541, 544, 547, 550, 553, 556, 559, 562, 565, 568
McElroy, John, 19, 393
MCI, 53
McIver, Duncan E., 188
Measurement of Air Pollution From Satellites, MAPS, 26, 27
INDEX

Mechanical Technology, Inc., 551, 554, 557, 561, 564
Memorandum of Agreement, MOA, 374, 375
Memorandum of Understanding, MOU, 371, 372, 373, 374, 375
Mercury, Project, 309, 396, 398, 401
Mercury Consolidated Inc., 554
Meredith, Leslie H., 393
Meteoroid and Exposure Module, MEM, 247, 248
Miami, Florida, 396
Michigan, University of, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Micro Craft, Inc., 567
Micro-Gravity Research Associates, 371
Microwave Limb Sounder, MLS, 102
Middle East, 57, 65
Minnesota, University of, 572, 575, 579, 582, 588, 591
Mission Adaptive Wing, MAW, 198
Mission Needs Statement, 502
Mission Peculiar Equipment Support Structure, MPESS, 23, 24, 27
Mississippi, Hancock County, 402
Mitre Corp., 587, 593, 596
Modular Computer Systems, Inc., 552
Mojave Desert, California, 196, 300, 307, 344
Moon, 240, 396, 401
Moore, Jesse W., 395
Morelos, Mexico, 17, 68, 73, 166
Mouat, David A., 375
Mount St. Helens, 14, 29
Multispectral Scanner, MSS, 42–44
Muroc, California, 392
Murray, Bruce C., 394
Myers, Dale D., 388
N
NASA Communications, NASCOM, 303, 305, 307, 320
NASA End-to-End Data System, NEEDS, 256
NASA Inspector General, 513
National Academy of Sciences, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
National Advisory Committee for Aeronautics, NACA, 175, 237, 383, 390, 392, 398, 399, 403
National Aeronautics and Space Act, 4, 31, 175, 356, 358, 499
National Aerospace Plane, NASP, 178, 182, 221–228
National Meteorological Center, 34, 35
National Oceanic and Atmospheric Administration, NOAA, 12, 14, 15, 16, 17, 28, 30, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 48, 49, 72, 86, 107–115, 307
National Science Foundation, 311
National Scientific Balloon Facility, 312
National Space Policy, 5, 240, 357, 358, 359
National Transportation Safety Board, 234
Naumann, Robert, 20
Naval Research Laboratory, 393
Navy, U.S., 17, 60, 70, 199, 204, 402
Neptune, 3, 308, 311, 343
Netherlands, The, 247
Network Control Center, 307, 313, 333
New England, 501, 537
New Guinea, Papua, 67
New Hampshire, University of, 578, 581, 583, 587, 590, 593, 596, 599
New Mexico State University, 572, 575, 578, 581, 584, 587, 590, 593, 596, 598
Nicks, Oran W., 397
Nighttime/Daylight Optical Survey of Thunderstorm Lightning, NOSL, 22
Nimbus, 12, 14, 15, 28, 32, 33, 37, 48, 86, 340, 341
Northeast Radio Observatory, 576, 585, 588
Northrop Corporation, Worldwide Aircraft, 200, 551, 552, 554, 555, 557, 558, 560, 561, 563, 566, 567, 570
Norway, 17
NOVA, 70, 169–170
NSI Technology Services Corp., 569
O

Oak Ridge National Laboratory, 253
Office of Advanced Research and Technology, OART, 179
Office of Management and Budget, 497
Office of Science and Technology Policy, 177
Ohio State University, 369, 572, 576, 585, 593, 597, 599
Oklahoma State University, 575, 579, 581, 584, 591, 593, 597, 600
Old Dominion University, 572, 575, 579, 582, 584, 587, 590, 594, 596, 599
Olstad, Walter B., 186
Ontario, Canada, 17, 37, 48, 57, 64, 247
Orbital Sciences Corporation, 371, 565, 569
Orbiting Satellite Carrying Amateur Radio, Oscar, 69
Organization of the Petroleum Exporting Countries, OPEC, 190
Orient Express, 182
Orlando, Florida, 235
Ott, Richard H., 356

P

Page, George F., 396
Paine, Thomas O., 388
Palapa, 17, 51, 67, 68, 69, 73, 166–167
Pan Am Pacific Satellite Corporation, 55
Pan American World Airways, Services, 550, 554, 557, 560, 563, 565, 568
Parker, Australia, 311, 312
Parks, Robert J., 394
Particle Environment Monitor, PEM, 103
Pasadena, California, 300, 303, 313, 320, 394
Patrick Air Force Base, 306
Payload Assist Module, PAM, 17, 51, 52
Pegasus, 401
Pennsylvania State University, 369, 572, 575, 578, 581, 585, 588, 591, 593, 596, 599
Perkin Elmer Corporation, 550, 553, 556, 559, 563, 566, 569
Petersen, Richard H., 397
Petrone, Rocco A., 400
Philippines, 68
Phobos, 312
Pickering, William H., 394
Pioneer, 309, 311, 345
Pittsburgh, University of, 572
Planning Research Corp., 550, 553, 556, 559, 562, 566, 568
Plum Brook Station, 399
Poker Flats Research Facility, 312
Polar Orbiting Geophysical Observatory, POGO, 45
Povinelli, Frederick P., 187
Pratt & Whitney, 191, 210, 212
Princeton University, 572, 575, 578, 581, 585, 588, 590, 593, 596, 599
Procurement Request, PR, 502, 503, 504
Program Communications Support Network, PCSN, 320, 321, 339
Propfan Test Assessment, PTA, 195, 197
Propulsion Systems Laboratory, 399
Pseudorandom noise, PN, 350
Puerto Rico, 50, 55
Purdue University, 571, 574, 577, 581, 584, 588, 591
P

Quality Short-haul Research Aircraft, QSRA, 181, 203, 204
Quann, John J., 393
Quiet, Clean, Short-haul Experimental Engine, QCSEE, 204

R

Rantek, 374
Raytheon Services Company, 551, 554, 557, 560, 563, 566, 569
RCA, Satcom Americom, 17, 35, 47, 50, 51, 52, 53, 70, 72, 132–138, 540, 551, 553, 559, 562
Reagan, Ronald, 3, 6, 11, 47, 182, 225, 355, 357, 464
Reck, Gregory, 188
Redstone Arsenal, 400, 401
Rees, Eberhard F.M., 400
Reis, Victor, 177
Rensselaer Polytechnic Institute, 582
Request for Proposal, RFP, 502, 504
Rescue Coordination Center, 48
Research and Program Management, R&PM, 497, 513
Research Triangle Institute, 573, 576, 582, 585, 588, 590, 594, 597
RMS Technologies, Inc., 558, 564, 566
Robertson, Floyd, 19
Roderick, John H., 302
Rogers Commission, 236, 389
Rogers Dry Lake, 391
Rohr Industries, 194, 195
Rolls Royce, 210
Rose, James T., 187, 355
Rosen, Cecil C., III, 187
INDEX 609

Rosen, Robert, 187, 188
Rosman, North Carolina, 305, 348
Ross, Lawrence J., 399
Ross, Miles, 396
Rotor Systems Research Aircraft, RSRA, Sikorsky Aircraft Division, 181, 205–208
Salisbury, Maryland, 402
Sander, Michael, 20
Sandusky, Ohio, 399
San Jose State University, California, 573, 576, 585, 597, 600
Santa Barbara Research Center, 551
Santiago, Chile, 306, 307, 348
Satellite Business Systems, SBS, 17, 51–54, 72, 139–141
Satellite Control Center, 34
Saturn, 3, 309, 310, 311, 396, 397, 401
Saudi Arabia, 65
Sauer Mechanical, Inc., 558
Scherer, Lee R., 391, 396
Schmoll, Kathryn, 20
Schneider, William, 301
Scott, David R., 391
Scott Science and Technology, Inc., 374
Seamans, Robert C., 388
Search and Rescue, SAR, 36, 37, 95, 257, Search and Rescue Satellite Aided Tracking, SARSAT, 17, 37, 47, 48, 49
Seasat, 14
Senate, U.S., 227, 228
Senegal, Dakar, 305, 307, 344
Sharp, Edward R., 399
Shepard, Alan B., 401
Short takeoff and landing, STOL, 180, 181, 203, 204, 210
Short takeoff and vertical landing, STOVL, 181, 203
Shuttle Carrier Aircraft, SCA, 241
Shuttle Imaging Radar, SIR-A, 22
Shuttle Multispectral Infrared Radiometer, 22
Sierra Negra, 14
Silverstein, Abe, 399
Singapore, 68
Singer Company, 551, 554, 557, 560, 563, 566, 570
Sjoberg, Sigurd A., 395
Slone, Henry O., 187
Small Business Administration, 506
Small Business Innovation Development Act, 361
Small Business Innovation Research, SBIR, 356, 359, 361, 362, 377, 378, 379
Small Business Technology Transfer, STTR, 362
Smith, Richard G., 396, 400
Smithsonian Institution, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Smylie, Robert E., 301, 393
Socorro, New Mexico, 311
Solar Array Experiment, SAE, 246
Solar Backscatter Ultraviolet, SBUV, 37
Solar Cell Calibration Facility, SCCF, 246
Solar Mesospheric Explorer, SME, 69
Solar Stellar Irradiance Comparison Experiment, SOLSTICE, 103
Solar Ultraviolet Spectral Irradiance Monitor, SUSIM, 103
Space Communications Company, 551, 558, 559
Space Flight, Control, and Data Communications, SFC&DC, 303, 304, 497
Space Industries, Inc., 372
Space Services, Inc., 373
Space Systems Development Agreement, SSDA, 361, 373, 374, Space Tracking and Data Acquisition Network, STADAN, 300
Space Transportation System, STS, 5, 6, 7, 14, 21, 55, 69, 348, 351
Spaceco, Ltd., 371
SPACEHAB, Inc., 374
Spacelab, 321, 329, 341
Texas A&M University, 369, 575, 578, 581, 584, 588, 597, 599
Texas, University of, at Austin, 574, 578, 581, 584, 587, 590, 593, 596, 599; and at Dallas, 572, 575, 579, 582
Thematic Mapper, TM, 42, 43
Thome, Pitt, 19
Thompson, James R., Jr., 400
3M Company, 201, 372
Tidbinbilla, Australia, 311, 312, 343
Tile Gap Heating, TGH, 245, 289
Tilford, Shelby G., 19
Total Ozone Monitoring System, 15
Tokyo, 182
Total Energy Control System, TECS, 231
Townsend, John W., Jr., 393
Transonic Aircraft Technology, TACT, 198
Transportation, U.S. Department of, 176, 192
Trimble, George S., 395
TRW, 47, 314, 352, 550, 553, 556, 559, 562, 565, 568
Tula Peak, 306
U
Ultrahigh frequency, UHF, 60, 62, 69
Union Oil Company, 375
Unisys Corp., 566, 569
United Kingdom, 17, 34, 48, 57, 210, 247
United Space Boosters, Inc., 540, 550, 553, 556, 559
United Technologies Corporation, 192, 205, 540, 550, 553, 556, 559, 562, 565, 568
Universities Space Research, 571, 575, 577, 580, 583, 586, 589, 592, 595, 598
University Corporation for Atmospheric Research, 583, 586, 589, 592, 595
UoSAT, 69, 73, 168–169
Upper Atmospheric Research Satellites, UARS, 15, 28, 31, 32, 33, 84, 87, 102, 104
Uranus, 3, 184, 255, 311, 312, 345
USBI Booster Production Co., 562, 565, 568
Utah State University, 573, 587
Utsman, Thomas E., 396
INDEX

V
Vandenberg Air Force Base, California, 305, 306, 320, 397
Vanderbilt University, 369
Vanguard, Project, 393
Vega, Soviet spacecraft, 312
Venneri, Samuel L., 187
Venus, 309, 312, 345
Vernamonti, Len, Colonel, 226
Vertical short takeoff and landing, VSTOL, 181, 203, 205, 208
Vertical takeoff and landing, VTOL, 181, 203, 210
Very high frequency, VHF, 67, 69
Very Large Array, 311
Viking, project, 5, 398
Virginia Islands, 55
Virginia Electric & Power Company, 552, 555
Virginia Polytechnic Institute, 572, 575, 578, 581, 584, 587, 590, 594, 597, 599
Visible/Infrared Spin Scan Radiometer, VISSR, 39, 40
von Braun, Wernher, 400, 401
Vought Corporation, 552, 554
Voyager, 3, 5, 184, 255, 308, 309, 310, 311, 312, 343, 345, 347
W
W&J Construction Corp., 569
Washington, University of, 573, 575, 578, 581, 584, 587, 590, 593, 596, 599
Washington University, St. Louis, 576, 579, 581, 585, 588, 591, 594
Webb, James E., 388
Weitz, Paul J., 395
Westar Satellite System, 17, 50, 51, 54, 55, 56, 72, 142–144
Western Union, Spacecom, 51, 54, 55, 301, 314, 351
Westinghouse Electric Corporation, 551, 555, 557, 561, 563, 567
Whitcomb, Richard T., 197
White House, 358
White Sands, Las Cruces, New Mexico, 42, 44, 300, 305, 306, 307, 313, 395
White Sands Ground Terminal, 307, 315, 316, 318, 350
White Sands Missile Range, 312
White Sands Test Facility, 395
Whitten, Raymond, 355
Wild, Jack W., 301, 359
Williams, Dell P., III, 187
Williams, Walter C., 391
Wind Imaging Interferometer, WINDII, 102
Wisconsin, University of, 369, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Wood, H. William, 301
Work Breakdown Structure, WBS, 502
World Meteorological Organization, 15
World War II, 219, 237, 239, 399
Wright, Linwood C., 187, 188
Wright-Patterson Air Force Base, 195, 214
Wyle Laboratories, 566, 569
Y
Young, A. Thomas, 390, 393
Z
Zero One Systems, Inc., 570
ABOUT THE COMPILER

Judy A. Rumerman is a professional technical writer who has written or contributed to numerous documents for the National Aeronautics and Space Administration. She has been the author of documents covering various spaceflight missions, the internal workings of NASA’s Goddard Space Flight Center, and other material used for training. She was also the compiler of *U.S. Human Spaceflight: A Record of Achievement, 1961–1998*, a monograph for the NASA History Office detailing NASA’s human spaceflight missions.

Ms. Rumerman has degrees from the University of Michigan and George Washington University. She grew up in Detroit and presently resides in Silver Spring, Maryland.
THE NASA HISTORY SERIES

Reference Works, NASA SP-4000

Link, Mae Mills. Space Medicine in Project Mercury (NASA SP-4003, 1965).

Management Histories, NASA SP-4100

Levine, Arnold S. Managing NASA in the Apollo Era (NASA SP-4102, 1982).
Fries, Sylvia D. NASA Engineers and the Age of Apollo (NASA SP-4104, 1992).
Project Histories, NASA SP-4200


SP-4207 not published.


Newell, Homer E. *Beyond the Atmosphere: Early Years of Space Science* (NASA SP-4211, 1980).


Wallace, Lane E. *Airborne Trailblazer: Two Decades with NASA Langley's Boeing 737 Flying Laboratory* (NASA SP-4216, 1994).

Butrica, Andrew J. Editor. *Beyond the Ionosphere: Fifty Years of Satellite Communication* (NASA SP-4217, 1997).


Swanson, Glen E. Editor. “Before This Decade Is Out . . .”: Personal Reflections on the Apollo Program (NASA SP-4223, 1999).
Center Histories, NASA SP-4300


Wallace, Lane E. Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center (NASA SP-4309, 1996).

Herring, Mack R. Way Station to Space: A History of the John C. Stennis Space Center (NASA SP-4310, 1997).

Wallace, Harold D., Jr. Wallops Station and the Creation of the American Space Program (NASA SP-4311, 1997).


General Histories, NASA SP-4400


The second ACRIM satellite solar monitoring experiment (ACRIM II) has provided high precision total solar irradiance observations since its launch as part of the Upper Atmosphere Research Satellite (UARS) mission in late 1991 and continues at present. The ACRIM I experiment on the Solar Maximum Mission provided the first unambiguous evidence of intrinsic total solar irradiance (TSI) variability (Willson 1980) (see Figure 1). The first clear evidence was a TSI 'dip' near 1980 day 100 (Willson et al. The Active Cavity Radiometer Irradiance Monitor Satellite, or ACRIMSAT is a defunct satellite carrying the ACRIM-3 (Active Cavity Radiometer Irradiance Monitor 3) instrument. It was one of the 21 observational components of NASA's Earth Observing System program. The instrument followed upon the ACRIM1 and ACRIM2 instruments that were launched on multi-instrument satellite platforms.