Most recent invocations of the anthropic principle have originated with physicists, especially those worried about the implausibility of the precise physical attributes of the universe being so finely tuned to allow the emergence of life and eventually humans. Despite the post hoc fallacy of such arguments, a recent New York Times report on a conference at Case Western Reserve University reveals that some physicists persist in entertaining this line of thought, Biologists have contributed far less to these discussions, possibly because we are generally so concerned with the particulars of life that the broad generalities of the anthropic debate elude us. But the claims of evidence of life in the Martian meteorite ALH84001 and the consequent development of astrobiology—a field predicated on "n = 1, generalize to the rest of the universe"—have sparked renewed scholarly interest in the possibilities of life elsewhere in the universe and the meaning of life on Earth.

The intellectual excitement over astrobiology is well deserved, for the essential question is: What general biological laws or properties will apply anywhere life, at least carbon-based life, exists? This question forces biologists to think like physicists and turns our traditional enthusiasm for the exquisite coiling of a snail or the horns of a beetle on its head. Some, convinced that the summation of a long string of improbable events is an impossibility, argue that it is unlikely that life exists anywhere else....
technology. We focus on landing on Europa and the broader implications of selecting the specific example of the right landing location.
We have previously discussed the corresponding miniaturized equipment that is already in existence. The authors conclude that their findings support the Goldilocks hypothesis and refute the displacement hypothesis. The full study "A Large Scale Test of the Goldilocks Hypothesis: Quantifying the Relations Between Digital Screens and the Mental Well-Being of Adolescents" can be downloaded here.