Contents

Preface xv

Acknowledgements xvii

Part I: Volatility and Correlation Analysis

Chapter 1: Understanding Volatility and Correlation 3
1.1 The Statistical Nature of Volatility and Correlation 4
1.2 Volatility and Correlation in Financial Markets 9
1.3 Constant and Time-Varying Volatility Models 12
1.4 Constant and Time-Varying Correlation Models 14
1.5 Remarks on Implementing Volatility and Correlation Models 17
1.6 Summary * 18

Chapter 2: Implied Volatility and Correlation 21
2.1 Understanding Implied Volatility* 22
 2.1.1 Volatility in a Black-Scholes World 23
 2.1.2 Call and Put Implied Volatilities 26
 2.1.3 Differences between Implied and Statistical Volatilities 28
2.2 Features of Implied Volatility* 30
 2.2.1 Smiles and Skews 30
 2.2.2 Volatility Term Structures 31
 2.2.3 Volatility Surfaces 32
2.3 The Relationship between Prices and Implied Volatility 34
 2.3.1 Equity Prices and Volatility Regimes 34
 2.3.2 Scenario Analysis of Prices and Implied Volatility 38
 2.3.3 Implications for Delta Hedging 43
2.4 Implied Correlation 45

Chapter 3: Moving Average Models 49
3.1 Historic Volatility and Correlation* 50
 3.1.1 Definition and Application* 50
 3.1.2 Historic Volatility in Financial Markets 52
 3.1.3 Historic Correlation in Energy Markets* 54
 3.1.4 When and How Should Historic Estimates Be Used? 56

An asterisk '*' denotes that illustrative software is on the CD. The password for the CD is available from http://www.wiley.co.uk/marketmodels.
3.2 Exponentially Weighted Moving Averages* 57
3.3 Constant Volatility and the Square Root of Time Rule 61

Chapter 4: GARCH Models 63

4.1 Introduction to Generalized Autoregressive Conditional Heteroscedasticity 65
 4.1.1 Volatility Clustering 65
 4.1.2 The Leverage Effect 68
 4.1.3 The Conditional Mean and Conditional Variance Equations 69
4.2 A Survey of Univariate GARCH Models 70
 4.2.1 ARCH 71
 4.2.2 Symmetric GARCH* 72
 4.2.3 Integrated GARCH and the Components Model 75
 4.2.4 Asymmetric GARCH* 79
 4.2.5 GARCH Models for High-Frequency Data 82
4.3 Specification and Estimation of GARCH Models 84
 4.3.1 Choice of Data, Stability of GARCH Parameters and Long-Term Volatility 84
 4.3.2 Parameter Estimation Algorithms 94
 4.3.3 Estimation Problems 96
 4.3.4 Choosing the Best GARCH Model 96
4.4 Applications of GARCH Models 97
 4.4.1 GARCH Volatility Term Structures* 98
 4.4.2 Option Pricing and Hedging 103
 4.4.3 Smile Fitting 106
4.5 Multivariate GARCH 107
 4.5.1 Time-Varying Correlation 108
 4.5.2 Multivariate GARCH Parameterizations 112
 4.5.3 Time-Varying Covariance Matrices Based on Univariate GARCH Models 114

Chapter 5: Forecasting Volatility and Correlation 117

5.1 Evaluating the Accuracy of Point Forecasts 119
 5.1.1 Statistical Criteria 121
 5.1.2 Operational Criteria 124
5.2 Confidence Intervals for Volatility Forecasts 126
 5.2.1 Moving Average Models 126
 5.2.2 GARCH Models 128
 5.2.3 Confidence Intervals for Combined Forecasts 128
5.3 Consequences of Uncertainty in Volatility and Correlation 135
 5.3.1 Adjustment in Mark-to-Model Value of an Option* 135
 5.3.2 Uncertainty in Dynamically Hedged Portfolios 138

Part II: Modelling the Market Risk of Portfolios 143

Chapter 6: Principal Component Analysis 143

6.1 Mathematical Background 145
Contents

6.2 Application to Term Structures* 147
 6.2.1 The Trend, Tilt and Convexity Components of a
 Single Yield Curve 147
 6.2.2 Modelling Multiple Yield Curves with PCA 149
 6.2.3 Term Structures of Futures Prices 153
6.3 Modelling Volatility Smiles and Skews 154
 6.3.1 PCA of Deviations from ATM Volatility 157
 6.3.2 The Dynamics of Fixed Strike Volatilities in
 Different Market Regimes 159
 6.3.3 Parameterization of the Volatility Surface and
 Quantification of da/dS 167
 6.3.4 Summary 170
6.4 Overcoming Data Problems Using PCA 171
 6.4.1 Multicollinearity 172
 6.4.2 Missing Data 175

Chapter 7: Covariance Matrices 179
7.1 Applications of Covariance Matrices in Risk Management 180
 7.1.1 The Variance of a Linear Portfolio 180
 7.1.2 Simulating Correlated Risk Factor Movements
 in Derivatives Portfolios 182
 7.1.3 The Need for Positive Semi-definite Covariance Matrices* 183
 7.1.4 Stress Testing Portfolios Using the Covariance Matrix* 184
7.2 Applications of Covariance Matrices in Investment Analysis 186
 7.2.1 Minimum Variance Portfolios 187
 7.2.2 The Relationship between Risk and Return 189
 7.2.3 Capital Allocation and Risk-Adjusted Performance
 Measures 193
 7.2.4 Modelling Attitudes to Risk 194
 7.2.5 Efficient Portfolios in Practice 198
7.3 The RiskMetrics Data 201
7.4 Orthogonal Methods for Generating Covariance Matrices 204
 7.4.1 Using PCA to Construct Covariance Matrices 205
 7.4.2 Orthogonal EWMA 206
 7.4.3 Orthogonal GARCH 210
 7.4.4 'Splicing' Methods for Obtaining Large Covariance Matrices 221
 7.4.5 Summary 227

Chapter 8: Risk Measurement in Factor Models 229
8.1 Decomposing Risk in Factor Models 230
 8.1.1 The Capital Asset Pricing Model 230
 8.1.2 Multi-factor Fundamental Models 233
 8.1.3 Statistical Factor Models 235
8.2 Classical Risk Measurement Techniques* 236
 8.2.1 The Different Perspectives of Risk Managers and
 Asset Managers 236
 8.2.2 Methods Relevant for Constant Parameter Assumptions 237
Contents

10.3 Applications of Normal-Mixture Distributions* 301
10.3.1 Covariance VaR Measures 302
10.3.2 Term Structure Forecasts of Excess Kurtosis 303
10.3.3 Applications of Normal Mixtures to Option Pricing and Hedging 305

Part III: Statistical Models for Financial Markets

Chapter 11: Time Series Models 315
11.1 Basic Properties of Time Series 316
11.1.1 Time Series Operators 316
11.1.2 Stationary Processes and Mean-Reversion 317
11.1.3 Integrated Processes and Random Walks 320
11.1.4 Detrending Financial Time Series Data 322
11.1.5 Unit Root Tests* 324
11.1.6 Testing for the Trend in Financial Markets 328
11.2 Univariate Time Series Models 329
11.2.1 AR Models 329
11.2.2 MA Models 331
11.2.3 ARMA Models 332
11.3 Model Identification* 333
11.3.1 Correlograms 333
11.3.2 Autocorrelation Tests 335
11.3.3 Testing Down 337
11.3.4 Forecasting with ARMA Models 338
11.4 Multivariate Time Series 340
11.4.1 Vector Autoregressions 340
11.4.2 Testing for Joint Covariance Stationarity 341
11.4.3 Granger Causality 344

Chapter 12: Cointegration 347
12.1 Introducing Cointegration 348
12.1.1 Cointegration and Correlation 349
12.1.2 Common Trends and Long-Run Equilibria 350
12.2 Testing for Cointegration* 353
12.2.1 The Engle-Granger Methodology 354
12.2.2 The Johansen Methodology 357
12.3 Error Correction and Causality 361
12.4 Cointegration in Financial Markets 366
12.4.1 Foreign Exchange 366
12.4.2 Spot and Futures 367
12.4.3 Commodities 367
12.4.4 Spread Options 367
12.4.5 Term Structures 368
12.4.6 Market Integration 368
12.5 Applications of Cointegration to Investment Analysis 369
12.5.1 Selection and Allocation 370
12.5.2 Constrained Allocations 371
12.5.3 Parameter Selection 372
12.5.4 Long-Short Strategies 375
12.5.5 Backtesting 375
12.6 Common Features 381
12.6.1 Common Autocorrelation 385
12.6.2 Common Volatility 386

Chapter 13: Forecasting High-Frequency Data 389
13.1 High-Frequency Data 390
13.1.1 Data and Information Sources 390
13.1.2 Data Filters 391
13.1.3 Autocorrelation Properties 391
13.1.4 Parametric Models of High-Frequency Data 393
13.2 Neural Networks 395
13.2.1 Architecture 396
13.2.2 Data Processing 397
13.2.3 Backpropagation 398
13.2.4 Performance Measurement 399
13.2.5 Integration 400
13.3 Price Prediction Models Based on Chaotic Dynamics 401
13.3.1 Testing for Chaos 401
13.3.2 Nearest Neighbour Algorithms 403
13.3.3 Multivariate Embedding Methods 405

Technical Appendices 409
A.1 Linear Regression* 409
A. 1.1 The Simple Linear Model 410
A. 1.2 Multivariate Models 412
A. 1.3 Properties of OLS Estimators 414
A. 1.4 Estimating the Covariance Matrix of the OLS Estimators 419
A.2 Statistical Inference 421
A.2.1 Hypothesis Testing and Confidence Intervals 421
A.2.2 Tests of Hypotheses 424
A.2.3 /"-test 426
A.2.4 The Analysis of Variance 427
A.2.5 Wald, Lagrange Multiplier and Likelihood Ratio Tests 428
A.3 Residual Analysis 429
A.3.1 Autocorrelation 430
A.3.2 Unconditional Heteroscedasticity 432
A.3.3 Generalized Least Squares 433
A.4 Data Problems 436
A.4.1 Multicollinearity 436
A.4.2 Data Errors 437
A.4.3 Missing Data 439
A.4.4 Dummy Variables 440
Contents

A.5 Prediction 443
 A.5.1 Point Predictions and Confidence Intervals 443
 A.5.2 Backtesting 444
 A.5.3 Statistical and Operational Evaluation Methods 445

A.6 Maximum Likelihood Methods 447
 A.6.1 The Likelihood Function, MLE and LR Tests 447
 A.6.2 Properties of Maximum Likelihood Estimators 449
 A.6.3 MLEs for a Normal Density Function 449
 A.6.4 MLEs for Non-normal Density Functions 451

References 453

Tables 467

Index 475
There are 4 basic market models: pure competition, monopolistic competition, oligopoly, and pure monopoly. Because market competition among the last 3 categories is limited, these market models imply imperfect competition. In a purely competitive market, there are large numbers of firms producing a standardized product. Market prices are determined by consumer demand; no supplier has any influence over the market price, and thus, the suppliers are price takers. Hiring English speaking models. The topic is Financial Analysis. To apply send photo and contact information to.”